Technical Report II

University of Maryland College Park Dorm Building 7

College Park, MD

Prepared By: Ryan Solnosky Structural Option

Faculty Advisor: Dr. Ali Memari

October 24, 2008

Table of Contents

Executive	Summary
Introductio	on3
Structural	Systems
	Foundation System
Code and I	Design Requirements
	Design Codes and References
Gravity Lo	bads
	Live Loads
Alternate I	Floor Systems
	System 1: Hambro Composite Floor System (existing)9System 2: Two-Way Flat Slab with Drop Panels11System 3: Composite Steel Framing14System 4: Girder-Slab16
Results	Comparison of Systems
Appendix	
	A: System 1, Hambro Composite Floor System

Executive Summary

Technical Report 2 is a pro-con structural study of alternate floor systems. This report describes the physical existing conditions of the current structure of University of Maryland College Park Dorm Building 7. This report will addresses three alternative floor framing systems and the existing.

In this technical report the systems analyzed were chosen for further investigation because they are best represented systems for providing maximum floor to ceiling height. Constructability was also taken into an account when choosing them. The systems chosen are:

- 1. Hambro Composite Floor System (existing)
- 2. Two way Flat Slab with Drop Panels
- 3. Composite Steel and Deck Framing System
- 4. Girder Slab with Prestressed Hollow Core Planks

After designing each of the four systems, it appears as if the composite steel and deck system and the girder slab with hollow core planks are the best choices for Building 7. Each of these systems is relatively light in weight and also has minimal thickness to allow for the low floor to floor height. The two way drop plate could have potential to be viable but the relative weight of the system and other all thickness it has are a disadvantage, the thickness could be reevaluated if concrete was a last choice. Also the current system in Building 7, Hambro Composite Floor System, is a good choice from a strength point of view; it however has other issues dealing with construction and fire protection that make it less desirable compared to the others.

Overall it is felt that system 3 and 4 have the greatest potential and benefits to Building 7. A more detailed and through analysis and design of the composite steel and deck system and the girder slab with hollow core planks are need to see other implications such as lateral load distribution of the diaphragm, connections, vibrations and the floor effects on the lateral system. These considerations will be looked at in future reports.

Introduction

The University of Maryland College Park Dorm Building 7 (Building 7) is the final stage of the south campus master plan at the University of Maryland. Building 7 is the corner stone of the south campus entrance for all to take part of as they approach the campus. Building 7 is an eight story residential dorm in the shape of an unsymmetrical-U that compliments the adjacent two existing dorm buildings in architectural styles with its shape and material usage.

This eight story-133,000 square feet residential building, houses 370 bedrooms, study lounges, seminar spaces and resident life offices. The average floor to floor height is 10 feet on each floor with an average floor area of 12,000-15,500 square feet per floor, depending on shifts in the vertical plane. The layout of each floor is such that all of the rooms have an exterior view of the surrounding campus with a central corridor running the length of the building. The roof level houses the mechanical equipment along with the elevator and stair towers.

The façade and building envelope is comprised of light gage studs with a brick masonry veneer exterior around the entire building. There is rigid insulation on the exterior of the studs between the veneer with a 1.5 inch air cavity. The walls are filled with batt insulation and covered in drywall.

The windows are fixed casement aluminum windows with cast stone sills to accent them. In the

regions where the wall sections are pulled away from the primary facade, the wall system is composed of composite metal panel and cast stone veneer panels. The roof system is an EPDM classification which is a fully adhered system comprised of a waterproof membrane that is bonded to rigid insulation by mechanical and chemical means with appropriate flashing at the base of the parapets and where the brick meets the top of the parapet.

Figure 1. (Typical Floor Plan)

Structural Systems

Foundation

The foundation system is composed of reinforced concrete grade beams 24"x30" with 3#8's on the top and bottom with number #4 stirrups placed every 14". The deep foundation portion is auger cast grout piles 16" in diameter. These piles are to be 65' below elevation and are to be able to carry at 65 ton allowable load capacity. The pile configurations range from 2-4 piles per cap. The slab on grade for the foundation is 4" thick normal weight concrete reinforced with 6x6-1.4xW1.4 welded wire fabric. All foundation concrete is 4ksi except for the SOG which is 3.5 ksi. Due to the site's soil conditions it was necessary that the differential settlement over the entire building was limited, because of this the allowable soil bearing capacity was held to 500 psf.

Column and Bearing Wall Systems

The concrete columns support the lower two floors of Building 7. They arranged to form a typical bay of 15'x20'. These columns are gravity bearing only due to the type of lateral system in the building. The typical size of the columns range from 18x14 to 64x14 with the reinforcing ranging in each from 4#9's to 10#9's for vertical bars with #4 stirrups spaced at 14" O.C.. The concrete compressive strength for the columns is 6 ksi.

The bearing walls in Building 7 support the upper 6 floors and run along the outside perimeter of the building as well as along the corridors. The typical spans for the floor joists are 20'. Dealing with the concerns that the joists may not line up with the studs causing the header to buckle, this problem was solved by placing a distribution tube across the tops of all bearing walls. These walls are also to be designed by the contractor who is given general criteria to follow along with a loading diagram for all the different bearing walls. The general criteria are: a maximum stud spacing of 16" O.C., a minimum G90 galvanized coating, and have a minimum 16 gage thickness.

Roof System

The roof system is made of the same Hambro Composite Floor System bearing on light gage walls. This Hambro Composite Floor System is also to be designed by the contractor instead of the Engineer just as the other floors are to be designed. Here are the criteria for the roof: overall depth of the members is 16" deep typically throughout except in the corridors which it drops to 8"deep with a 3" thick concrete slab reinforced with 6x6-2.9xW2.9 welded wire fabric. The mechanical unit weights are listed and are placed close to the corridors for they are formed by the bearing walls. The elevator towers and stair towers are made of the same light gage studs.

Lateral Systems

The primary lateral system for Building 7 is shear walls. On each floor there are 16 shear walls spanning both directions of the building, 9 in the north-south direction and 7 in the east-west direction. The lower two stories shear walls are 10" thick reinforced concrete with 10#5's on each end for flexure and for shear reinforcement there is #5@12" each way, each face. All concrete shear walls are 6 ksi normal weight concrete. The upper floors shear walls are to be light gage studs with maximum stud spacing of 16" O.C. they are also have a minimum G90 galvanized coating and have a minimum gage of 16 for the studs while the tracks are permitted to have a 20 gage minimum. There is to be bridging at 4' spacing throughout the shear walls. Since these are light gage it was determined that steel strapping was needed and is being provided in an X pattern connecting to the farthest opposite ends. The light-gage shear walls not designed by the Structural Engineer but rather is to be designed by the Contractor. The Structural Engineer has however given detailed loading diagrams of each load and the type of load on every shear wall.

Floor Systems

Lower 2 Floors

The lower two floors are made of reinforced concrete beams spanning between the columns. The intermediate members between these beams are made up of the Hambro Composite Floor System, which includes the steel joists and the slab system. The concrete beams range from 16x36 to 18x18 to 24x36 with the reinforcing ranging in each from 3#5's to 6#10's for longitudinal bars with #4 stirrups spaced from 8" to 16" O.C.

The Hambro Composite Floor System in Building 7 is not designed by the Structural Engineer but rather is to be designed by the Contractor. The Structural Engineer has however given detailed criteria that the contractor must follow. The following is the criteria: are overall depth of the members is 16" deep typically throughout except in the corridors which it drops to 8"deep, the slab on top is to be 5" thick reinforced with 6x6-W4.0xW4.0 welded wire fabric.

Upper 6 Floors

The floor system is made of the same Hambro Floor System but instead of them bearing on concrete girders they bear on light-gage stud bearing walls. This Hambro Floor System is also to be designed by the contractor instead of the Engineer. Here are the criteria for these 7 stories: overall depth of the members is 16" deep typically throughout except in the corridors which it drops to 8"deep with a 3" thick concrete slab reinforced with 6x6-2.9xW2.9 welded wire fabric.

Here is a typical Upper Floor plan that will be utilized throughout this technical report. The upper floors were chosen due to the majority of the building is structurally supported in this manner. The arrows on the floor plans indicate the way the Hambro joists are laid out. The area shaded in blue is the typical bay that will be studied for the alternate systems.

Figure 2.

Shown below in Figure 3 is an enlargement of the typical bay. The larger area shown in green will be the primary typical bay which all the designs are based off of. Depending on the different systems that have been chosen to be studied, the area in yellow may also have significant impact in the overall design of a system. In some cases only one half of the green area will be considered while for other systems this may change to the entire area from outer wall to outer wall. The reason for this is because of requirements and limitations of the system.

Design Codes & Guides

- 1. AISC Unified Manual 13th Edition
- 2. ACI 318-08
- 3. ASCE 7-05
- 4. International Building Code (IBC) 2006
- 5. Girder-Slab Design Guide v1.4
- 6. Hambro Floor System Design Guide
- 7. Vulcraft floor and Deck Catalog
- 8. CRSI Design Handbook 2002
- 9. RS Means Square Foot Costs 2008

Deflection Criteria

Typical live load deflections limited to: L/360 Typical total deflections limited to: L/240 Typical construction load deflections limited to: L/360

Gravity Loads

Live Loads

The live loads for Building 7 were calculated in accordance with IBC 2006 which references ASCE 7-05, Chapter 6. In the event that ASCE did not list loads needed a close equivalent was chosen to meet that space.

	Liv	e Loads						
Occupancy	Design	Code Required Loads						
Occupancy	Load	Load	Code					
Corridors	100 psf	100 psf	ASCE 7					
Offices	100 psf	50 psf	ASCE 7					
Seminar Room	100 psf	40 psf	ASCE 7					
Mechanical Room	250 psf	125 psf	Light manufacturing					
Partition	15 psf	-	-					
Roof	30 psf	20 psf	ASCE 7					
Dormitory Rooms	40 psf	40 psf	ASCE 7					
Lobby	100 psf	100 psf	ASCE 7					

Dead Loads

The dead loads for Building 7 were determined by referencing various standards and textbooks to find the corresponding values of their weights. Approximate values were assumed when ranges were listed depending on how dense the layouts were.

	Dead Loads	
Doof Dood Lood	Material	Design Weight
Rooi Dead Load		
	Rigid Insulation	4 psf
	3" Hambro Slab	38 psf
	M/E/P	5 psf
	Ceiling Finishes	3 psf
	Roofing Finish	4 psf
	Total Dead Load	54 psf
Typ Floor Dood Lood	Material	Design Weight
Typ. Floor Deau Loau		
	3" Hambro Slab	38 psf
	5" Hambro Slab	63 psf
	M/E/P	5 psf
	Ceiling Finishes	3 psf
	Total Dead Load	46-71 psf

Alternate Framing Systems

System 1: Hambro Floor System (Existing)

Description of the System

The Hambro Floor System is a proprietary product developed by Canam Group. This system consists of an open web joists and a concrete slab with W.W.F. as its reinforcing. The joists are shaped with a special bar on the top that is designed to protrude into the slab and help form composite action. The joists run a single direction and can rest on many various other structural supports such as masonry walls, concrete beams, steel beams, precast walls, etc. The slab behaves as a continuous one-way that carries the loads transversely to the joists.

System Design & Evaluation

Designed System

F'c (of the slab) = 3000 psiFy (of the W.W.F) = 60,000 psiFy (of the joist) = 50,000 psi

Overall system depth = 19 inches

Structural Assumptions:

The structural assumptions for this case are that the design is based off of the requirements so to fit within the scope that the engineer prescribed. The recommended live loads were used and matched to Hambro but Hambro used a larger dead load then we needed. Also Hambro's design chart takes a load factor of 1.7 for both live and dead. Finally we chose the four 4'-0'' spacing because this is the same size at typical formwork to fit between the joists when pouring the slab due to no decking is used in the end result. Finally the light-gage bearing wall was not considered in this design.

Evaluations

Structural:

Structurally this system seems reasonable for the design and layout of Building 7. The joists and slab (19"deep overall) meet the required depth (24" deep) to be fitted into the ceiling cavity. The designed joists are over designed "depth-wise" to allow larger for opening in the web so ductwork can be placed through it, this should be more than adequate to control live loads.

On the other hand due to the thin slab thickness (3") and relative flimsiness of the joists, vibration can be an issue. Also the connections need to be welded to the distribution tubes on the bearing walls thus leaving more error for mistakes. The W.W.F. also needs to be draped over the joists and be laid in the wave pattern; this reason could pose a problem for getting W.W.F. to lay properly. This can leave room for a structural weakness of the slab.

Architectural:

This system, on the basis of not impacting the architecture is very good. The main reason for this is that the system has the ability to sit on any wall as long as they can carry the load. This leaves more freedom for the architect to no have to worry about the columns interfering with their space layout. It is felt that this is a key reason why this system is chosen. This system also has very good acoustic properties as described by the technical manual.

Construction:

From a construction stand point this system can be fast to build depending on the supports the joists bear on. In the case of Building 7 the bearing members are bearing walls. This system has draw backs for you need the bearing walls up before the joists can be placed and the slab must be poured before the next floor is erected. This can be time consuming and difficult especially when moving equipment around the floor plan do to the many bearing walls.

Advantage & Disadvantage

Advantages

- * Lightweight system
- * Can obtain high fire ratings
- * Good acoustic properties

Disadvantages

- * Possible vibration issues
- * Harder to apply fire proofing
- * Limited configurations of joists, per design guide

System 2: Two-Way Flat Slab with Drop Panels

Description of the System

The two-way flat slab system with drop panels is an all concrete floor system reinforced with standard size reinforcing bars. Edge beams can be added around the perimeter of the floor if needed to help carry and transfer the loads near the outer bays. The system is based on the fact that the column carries the entire load directly from the slab. The slab is a single thickness except where the drop panels form around the column. The drop panels are used to help increase the stiffness and also resist critical shear issues near the column.

System Design & Evaluation

Fy (rebar) = 60,000 psi

Overall system depth = 10.5 inches depth with drop panels = 18 inches

Column Strip Reinforcing Bars: Top Ext. = (12) #5 bars Bottom = (12) #7 bars Top Int. = (20) #5 bars

Middle Strip Reinforcing Bars: Bottom = (15) #5 bars Top = (9) #6 bars

Structural Assumptions:

The structural assumptions for this system are that we are able to use the CRSI design manual to design the bay. This manual is based on the direct design method (DDM). The current building's layout does not meet the requirements of DDM. The Equivalent Frame Method (EFM) is required for we don't have 3 continuous bays in each direction. The DDM method was chosen for simplicity given this report deals with schematic design but if this system seems viable a more rigorous model and the use of EFM would need to be done.

The bay size of this system changed in the building so that there are only two spans in the short direction instead of having a third tiny bay. The small 3"-4"cantilever was ignored at this stage but would have an effect on the moments and reinforcing bars supporting the cantilever. On this bay there is a corridor live load near the right columns that is higher than the rest of the bay's live load. For this technical report an average based on area was used to determine an effective live load over the entire bay.

Evaluations

Structural:

This system has the potential for a good alternative floor system for Building 7. The majority thickness at the center of the bay is 10.5" thick which will allow for more MEP space. This thickness is rather large for the bay size but was based off of Table 9.5C so deflections were not needed. If viable for Building 7 then a thinner slab can be analyzed and deflection calculations can be performed.

The down side to this system is that it is very heavy and can lead to foundation issues especially since the bearing capacity is rather low. This system may require a completely different foundation configuration. Also note that the reinforcing was based off of CRSI and it uses different bar sizes in different areas. If chosen a more uniform bar size throughout would be chosen for constructability.

Architectural:

The only primary effect of this system on the architecture is that the columns maybe become large as you travel down the building. The larger the columns become the harder they will be to conceal within the walls or placed where the arrangement of the spaces conceal their locations. Should this system be chosen as a viable alternative then an architecture breath may be needed to consider the impact of large columns in spaces.

Construction:

This system has both benefits and disadvantages. A benefit is that the formwork is reusable and the construction of the formwork is fast. Also the availability of the concrete itself is easy to come by for it doesn't have any special admixtures. A disadvantage of concrete flat system is that it needs to be shored in place until the concrete has developed enough strength to carry its own load. This will limit how fast the floors can be constructed and occupied thus possibly resulting in a longer overall construction schedule.

Advantage & Disadvantage

Advantages

- * Shallow floor depth & no beams to work MEP systems around
- * Decreased vibrations due to concrete
- * No fireproofing needed
- * Reusable formwork

Disadvantages

- * Heavier system can cause foundation issues
- * Shoring and longer concrete placing time is needed
- * More formwork around drop panels needed

System 3: Composite Steel Deck & Beams

Description of the System

The composite steel system is a combination of steel columns, typically, at the corners of the bays with rolled steel W-shapes as girders spanning from column to column. From here in a chosen direction are infill beams spanning that are also rolled W-Shapes. Each beam is design to act compositely so that the concrete takes part of the compression force. The shear force needs to be transferred between the beam and the deck for composite action to work. This is typically done with either composite deck designed to transfer shear or by the use of shear studs.

System Design & Evaluation

Designed System

F'c (of the slab) = 3000psi Fy (of the studs) = 60,000psi Fy (of the steel) = 50,000psi

Majority system depth = 16inches

2VLI22 composite metal deck (3 span) with LWC Total depth of deck = 5.25" Stud size = ³/₄ Dia 4" long

Structural Assumptions:

The structural assumption taken when designing this system is that we can reduce the live load when permitted. Table 3-19 was used to design the section based on a guess of the PNA, then confirmed that this was satisfied. Only live load deflections were considered for this design and no construction live load. Finally 5 psf was added into the dead load to account for the beams and girders, this number was chosen by an average stated in past class examples. All beams and girders were assumed to be fully braced against lateral-torsional buckling.

Evaluations

Structural:

This system seems to be a very good choice for Building 7. The members are relatively small, W10x19 for the beams and W14 and W16 for the girders. This system is heavier than the existing system but less than concrete and will affect the foundation less. The current layout would have a small series of beams spanning and connecting the two larger bays on each side but would have a smaller depth allowing for an excellent spot for the mechanical ducts to be run.

The decking chosen, 2VL22 with 3.25" LWC topping, provides the required fire rating such that the deck need not be sprayed with fire proofing. The down side whoever is that the exposed steel need to have sprayed on fire proofing to gain the required 2 hr rating.

Architectural:

This system does not seem to affect the architecture of the building from looking at the layout of the spaces. Where concerns about the girder depth taking up the entire floor cavity or extra, this was considered in the layout of the spaces and the girders were strategically placed directly about the wall cavities so if need be, they can be hidden within the wall. In the case a wall is to thin it could be thickened to conceal the girders.

Construction:

This system has many advantages. A primary advantage is that the erection time for steel is fast and stories can be built quick succession. There is no need to have walls up before the next floor, allowing for free movement of the construction machinery around on that floor as compared to the other systems. If the floor system on take gravity loads only as it does in this case then the steel connections are simple pinned connections and can be made at a cheap price.

Advantage & Disadvantage

Advantages

- * Faster construction
- * Thinner floor thickness compared to non-composite
- * Good against vibrations
- * At times no deck shoring is needed
- * Lighter steel shapes

Disadvantages

- * Expensive connections
- * Deep beams can obstruct mechanical ducts
- * Installation of shear studs

System 4: Girder-Slab

Description of the System

The Girder-Slab System is a proprietary product developed by Girder-Slab Technologies LLC. This system provides a composite action between the special steel girders that support hollowcore concrete planks on their bottom flange. These girders are open-web dissymmetric beams (D-Beams). Castellated sections of the beam are grouted solid after the planks are laid to provide the interaction and connection between the two materials. Typically on top of the planks is a poured concrete topping as a finish. The underside of this system can be exposed to the open as the finished ceiling if the correct hollow-core plank is chosen.

System Design & Evaluation

Structural Assumptions:

For this system the primary structural assumption were that the deflections for this system were met based on the chart values given for the hollow core planks from Nitterhouse Concrete. No live load reductions were performed on this system to give a worse case result when choosing out of the tables. The beams running parallel to the planks were not designed because they are not supporting any load; instead they connect the columns only to provide stability.

Evaluations

Structural:

This system seems to be very reliable and feasible for Building 7. The primary benefits are that the floors are extremely thin (10" total) resulting in allowing more floor cavity of other building systems. A negative side to this system is that the span of the D-Beam is limited in load carrying and deflections requirements. In the design it was necessary to add extra columns. A further look at this implication and also the limited D-Beam sizes will need to be considered if this system is viable.

Architectural:

This system doesn't affect the architecture of Building 7 except where the extra columns would be required. In this case a architectural breath would be need to see if all extra required columns can be hidden with spaces and wall or if the spaces themselves need to be redesigned to properly accommodate this new column gird. Hollow core planks do provide better acoustic properties due to their mass and this could be of benefit for this system has a great floor slab thickness than the original, being a dorm this could have a great impact.

Construction:

This system is has some great advantages for Building 7 is that the erection and construction time to build this system are relatively short allowing for the floors to be erected in a shorter time. The negative side to this system is that since there are two proprietary products, the planks and the D-Beams, the lead time associated with these will be much higher than other systems.

Advantage & Disadvantage

Advantages

- * Very shallow floor depth
- * Light weight
- * Ease of construction
- * Noise reduction form hollow core plank

Disadvantages

- * Smaller column grid spacing
- * Steel fire protection is required
- * Possible vibration issues
- * Limited D beam sizes

Floor Systems Comparison

	t	ypical Bay Systems		
Criteria	Hambro Floor system	Two-Way Flat Slab with Drop panels	Composite Steel Framing	Girder-Slab
Relative Cost	\$10.34 per S.F.	\$16.70 per S.F.	\$19.00 per S.F	\$13.08 per S.F
Structure Depth	19" throughout the bay	10.5" @ the center of the bay	16"@ the center of the bay	10" throughout the bay
Structure Weight	43 psf	131.3 psf	50 psf	63 psf
Fireproofing	No spray FP but gypsum board ceiling req.	No additional FP required	SOFP needed	SOFP needed
Vibration	Average	Good	Good	further investigation needed
Lead Time	Long	Short	Medium	Long
Construction Difficulty	Easy	Medium	Easy	Easy
Formwork	Yes for between joists	Yes for the entire system	No	No
Fire Rating	2 hr with UL Design G-229	2hr with carbonate Aggregate needs 3/4" clear cover	2 hr with UL Design No. 916	2 hr with UL Design K912

Conclusion

The results of the preliminary designs conducted in this report were aimed to generate a better understanding of basic floor framing systems and how they might be a better alternative structural floor system for Building 7. Each framing system was designed using basic preliminary (schematic) methods and assumptions, and then examined for its feasibility on different discipline fronts. While none of the systems should be altogether eliminated, some are better than others.

None of the systems should be eliminated completely, but some systems have greater advantages over other systems. The two-way flat slab system was designed based on certain constraints that could be adjusted in an attempt to lighten the system and also thin the slab more if this system is to be kept. This system would impact the foundations but also give more room in the ceiling cavity. The existing hambro system is naturally acceptable for a floor system but has limitations on building speed and also stability related to vibrations and fire ratings.

The two best systems that show enough feasibility to further look at that are: the girder slab system with hollow core planks and the composite steel and deck system. These systems are less thick in the ceiling cavity allowing for more room. Also they are two lightest systems after the existing. The disadvantages to these are they need spray one fire proofing. The cost involved could be offset from the original system due to each floor can be built without bearing walls and the floors plans can be open to allow for faster construction. The construction of these systems are relatively easy compared to the over systems. So in conclusion it is recommended that these two systems are the best alternative for Building 7 and a more advanced analysis and design considering more parameters will be done in the future to see which the best is.

Appendices

The pages following this page contain the following Appendices:

- A: System 1, Hambro Composite Floor System
- B: System 2, Two-Way Flat Slab with Drop Panels
- C: System 3, Composite Steel Framing
- D: System 4, Girder-Slab

Appendix A: System 1, Hambro Composite Floor System

UL DESIGN #	RATING (hr.)	SLAB THICKNESS (in.)	CEILING	BEAM RATING (hr.)
G-003	2	2 1/2	Suspended or panel	
G-213	2 3	3 4	Suspended or panel Suspended or panel	2 3
G-227	2	2 1/2	Suspended or panel	3
G-228	2	3 1/4	Suspended or panel	2
G-229	2	3	Suspended or panel	2
	3	4	Suspended or panel	3
G-524	1 - 2 3	2 1/2* 3 1/2*	Gypboard 1/2" Gypboard 1/2"	2 3
G-525	3	3 1/4	Gypboard 5/8"	3
G-702	1 - 2 - 3	Varies*	Spray on	
G-802	1 - 2 - 3	Varies*	Spray on	

Table 1 - Slab Capacity Chart (Total Load in psf)

SLAB	d	MESH SIZE	4'-1 1/4" JOI	ST SPACING
THICKNESS (t)		F _y = 60,000 psi	Exterior	Interior
t≥2 1/2"		6 x 6 W2.0 x W2.0	114	123
<u></u>	1.6"	6 x 6 W2.0 x W2.9	157	172
No chair		6 x 6 W4.0 x W4.0	210	230
t ≥ 3" with	2.1"	6 x 6 W2.9 x W2.9	206	226
1/2" Rod		6 x 6 W4.0 x W4.0	279	306
(shop welded to top chord)				
t≥ 3 1/2"	2.6"	6 x 6 W2.9 x W2.9	256	280
with 2 1/2"		6 x 6 W4.0 x W4.0	347	380
Chair				

Note: Slab capacities are based on mesh over joists raised as indicated.

TABLE 6: D500[™] Clear Span Table

	Resid	ential	(Commercia					
Slab Thickness	2 1/2"	3″	3"	3 1/2"	3 3/4"				
Joist	LL = 40 psf	LL = 40 psf	LL = 50 psf	LL = 50 psf	LL = 50 psf				
Slab Sinckness Joist LL Depth* DL 8" - 10" - 12" - 14" - 16" - 18" - 20" - 22" - 24" -	DL = 59 psf	DL = 65 psf	DL = 65 psf	DL = 71 psf	DL = 74 psf				
8"	20' - 0"	20' - 0"	20' - 0"	20' - 0"	20' - 0"				
10"	25' - 0"	25' - 0"	25' - 0"	25' - 0"	25' - 0"				
12"	30' - 0"	30' - 0"	30' - 0"	28' - 0"	26' - 6"				
14"	33' - 0"	31' - 0"	31' - 0"	31' - 0"	29' - 0"				
16"	36' - 0"	33' - 6"	33' - 6"	33' - 6"	31' - 0"				
18"	38' - 6"	36' - 0"	36' - 0"	36' - 0"	33' - 0"				
20"	41' - 0"	38' - 6"	38' - 6"	38' - 6"	35' - 6"				
22"	43' - 0"	40' - 6"	40' - 6"	40' - 6"	37' - 0"				
24"	43' - 0"	43' - 0"	43' - 0"	43' - 0"	39' - 0"				

NOTES:

- Minimum slab thickness = 2 1/2"
- Minimum top chord cover = 1 "

• $f'_{c} = 3,000 \text{ psi}, F_{y} = 50 \text{ ksi}$

Table reflects uniform loads only.

Standard spacing is 4'-1 1/4"
Live load deflection design standard: L / 360 Design clear spans, other than those shown in the above table, require additional structural review.

Maximum Duct Openings

HAMBRO'

1

Appendix B: System 2, Two-Way Flat Slab with Drop Panels

f _c ' Gra	= 4,0 ade 60	000 p:) Bar	si s		sq	QUARE	FLA EDGE	F SLA PANE No	AB SY L Beams	STEN With	VI Drop	Panels		
	Factored		-	(3)	R	EINFOR	RCING	BARS	(E. W.)		M	OMENT	S
CC.	Superim- posed	Square	nel	Square	Column	Colu	umn Strip (1)	Middle	Strip	Total	Edge	Bot.	Int.
$\ell_1 = \ell_2 $ (ft)	Load (psf)	Depth (in.)	Width (ft)	Size (in.)	Yr	Top Ext. +	Bottom	Top Int.	Bottom	Top Int.	Steel (psf)	(-) (ft-k)	(+) (ft-k)	(-) (ft-k)
		-	h	= 10.5 i	n. = TOT	AL SLAB	DEPTH	BETWE	EN DROI	PANEL	S			
26	100	6.00	8.67	12	0.760	12-#5 2	15-#5	15-#5	10-#5	10-#5	2.46	151.6	303.2	408.1
26	200	6.00	8.67	15	0.798	12-#5 4	11-#7	14-#6	13-#5	11-#5	3.08	198.2	396.4	533.6
26	300	7.50	8.67	18	0.679	12-#5 2	18-#6	12-#7	9-#7	10-#6	3.83	244.7	489.4	658.8
26	400	9.00	8.67	20	0.632	12-#5 2	16-#7	13-#7	14-#6	9-#7	4.39	291.2	582.3	783.9
26	500	9.00	10.40	22	0.707	14-#5 2	12-#9	12-#8	12-#7	10-#7	5.17	336.6	673.1	906.1
26	600	9.00	10.40	26	0.701	16-#5 3	17-#8	13-#8	9-#9	9-#8	6.00	379.8	772.7	1022.5
27	100	6.00	9.00	12	0 797	12,#5 3	9.#7	12-#6	12-#5	10-#5	2.66	170.3	340.6	458.5
27	200	7.50	9.00	16	0.651	12-#5 1	12-#7	20-#5	15-#5	9-#6	3.25	222.6	445.2	599.3
27	300	9.00	9.00	18	0.634	12-#5_2	15-#7	12-#7	10-#7	11-#6	3,96	274.9	549.8	740.1
27	400	9.00	9.00	20	0.741	14-#5 4	14-#8	12-#8	9-#8	10-#7	4.88	327.9	655.8	882.8
27	500	9.00	10.80	25	0.694	16-#5 3	13-#9	13-#8	9-#9	15-#6	5.70	375.4	750.8	1010.7
28	100	7.50	9.33	12	0.750	13-#5 2	19-#5	18-#5	13-#5	11-#5	2.74	191.0	382.0	514.2
28	200	7.50	9.33	16	0.767	13-#5 4	18-#6	16-#6	12-#6	10-#6	3.50	249.3	498.5	671.1
28	300	9.00	9.33	18	0.745	13-#5 5	13-#8	26-#5	11-#7	17-#5	4.32	308.1	616.1	829.4
28	400	9.00	11.20	23	0.722	15-#5 4	13-#9	16-#7	10-#8	11-#7	5.20	365.1	730.3	983.1
28	500	9.00	11.20	28	0.644	17-#5 2	18-#8	14-#8	12-#8	10-#8	5.95	415.8	831.6	1119.4
29	100	7.50	9.67	12	0.787	13-#5 3	22-#5	14-#6	10-#6	12-#5	2.88	212.8	425.5	572.8
29	200	9.00	9.67	16	0.702	13-#5 3	15-#7	23-#5	10-#7	11-#6	3.67	277.7	555.4	747.6
29	300	9.00	9.67	19	0.763	14-#5 5	12-#9	15-#7	10-#8	19-#5	4.75	342.7	685.5	922.7
29	400	9.00	11.60	25	0.702	17-#5 3	14-#9	14-#8	12-#8	10-#8	5.68	405.3	810.5	1091.1
30	100	9.00	10.00	12	0.722	14-#5 1	17-#6	14-#6	16-#5	13-#5	3.00	236.8	473.6	637.6
30	200	9.00	10.00	16	0.763	14-#5 4	13-#8	18-#6	11-#7	17-#5	3.99	308.5	617.1	830.7
30	300	9.00	10.00	22	0.691	16-#5 3	13-#9	17-#7	18-#6	15-#6	5.07	377.6	755.2	1016.6
30	400	9.00	12.00	28	0.700	18-#5 5	16-#9	15-#8	10-#9	18-#6	5.96	444.1	888.3	1195.7
31	100	9.00	10.33	12	0.777	14-#5 3	11-#8	16-#6	13-#6	15-#5	3.29	261.9	523.8	705.1
31	200	9.00	10.33	18	0.749	14-#5 5	12-#9	15-#7	12-#7	19-#5	4.29	339.6	679.2	914.3
31	300	9.00	10.33	24	0.731	17-#5 6	18-#8	14-#8	12-#8	13-#7	5.38	416.0	832.0	1120.0
31	400	9.00	12.40	31	0.697	14-#6 4	17-#9	14-#9	11-#9	12-#8	6.43	483.9	967.9	1302.9

Table 2.3—Minimum cover for co	oncrete floor and roof slabs
--------------------------------	------------------------------

		Cover ^A	^B for correspon	nding fire resis	tance, in.						
Aggregate type	Restrained	Unrestrained									
	4 or less	l hr	1 ¹ / ₂ hr	2 hr	3 hr	4 hr					
		Nonpres	tressed								
Siliceous	3/4	3/4	3/4	1	11/4	15/8					
Carbonate	14	24	М,	۰.	11/4	1%					
Semi-lightweight	3/4	3/4	3/4	Ν,	11/4	11/4					
Lightweight	3/4	3/4	3/4	٠.	11/4	11/4					
		Prestr	essed								
Siliceous	3/4	11/8	11/2	13/4	23/8	23/4					
Carbonate	3/4	1	13/8	15/8	21/8	21/4					
Semi-lightweight	3/4	1	13/8	11/2	2	21/4					
Lightweight	3/4	1	13/8	11/2	2	21/4					

A. Shall also meet minimum cover requirements of 2.3.1 B. Measured from concrete surface to surface of longitudinal reinforcement

Appendix C: System 3, Composite Steel System

CRAFT

SLAB INFORMATION

Total	Theo. Concre	ete Volume	Recommended
Slab	Yds./	Cu. Ft./	Welded Wire
Depth	100 Sq. Ft.	Sq. Ft.	Fabric
4"	0.94	0.253	6x6-W1.4xW1.4
41/2"	1.09	0.294	6x6-W1.4xW1.4
5"	1.24	0.336	6x6-W1.4xW1.4
51/4"	1.32	0.357	6x6-W1.4xW1.4
51/2"	1.40	0.378	6x6-W2.1xW2.1
6"	1.55	0.419	6x6-W2.1xW2.1
61/4"	1.63	0.440	6x6-W2.1xW2.1
61/2"	1.71	0.461	6x6-W2.1xW2.1

(N=14) LIGHTWEIGHT CONCRETE (110 PCF)

Total Slab	Deck		SDI Max. Ur Clear	nshored Span								Superi	mposed L lear Spa	.ive Load n (ft-in.)	PSF			-	
Depth	Type	1 Span	2 Span	3 Span	6'-0	6'-6	7-0	7.6	8'-0	8'-6	9'-0	9'-6	10:-0	10'-6	11'-0	11'-6	12'-0	12'-6	13'-0
1011.1	2VL122	7-2	9'-6	9'-8	238	209	186	149	133	120	108	98	90	82	75	69	64	59	55
4"	2VL 21	7'-10	10'-2	10'-8	254	223	198	178	142	128	115	105	96	87	80	74	68	63	58
	2VLI20	8'-5	10'-9	11'-1	268	235	209	187	169	135	122	110	101	92	84	78	72	66	61
1=27	2VL119	9.6	11-11	12'-4	297	260	230	206	185	168	153	141	111	101	93	86	79	73	68
(* =)	21/118	10'-8	12'-10	13'-3	324	285	253	227	205	187	171	158	146	138	107	99	92	86	80
30 DSE	21/1/17	11'.5	13'.8	14'-0	352	309	27.9	245	221	201	19.4	160	158	145	135	107	00	02	86
00101	21/1/16	12.1	14'-4	14'.4	377	330	202	281	235	214	105	170	185	153	143	133	119	08	01
	2\/1 22	8.0	0'.1	0'.3	276	243	10.5	173	155	130	128	114	104	98	88	81	75	69	84
1 1/2*	21/1/21	7.5	0'.0	10'-1	205	250	225	185	185	1/0	134	122	104	102	03	96	70	73	69
4 112	21/1 120	0.0	10'4	10'.9	240	200	040	217	100	157	144	100	117	102	00	00	94	77	70
0-2 1/25	21/1/10	0.0	141.5	111.0	346	200	200	230	215	105	179	140	120	119	109	100	02	95	70
(-2 1/2)	21119	1000	401.0	102.0	970	202	200	209	210	017	100	100	123	100	100	1100	107	100	19
SE DEE	21/1/10	10:10	4014	10' 0	400	250	204	204	200	222	010	100	101	100	120	10	1107	107	100
30 F3F	21/11/2	14' 5	13-1	12:10	400	300	240	204	200	233	213	209	101	179	104	124	113	10/	100
	21110	0.0	0'0	9' 40	945	077	000	407	470	450	144	100	192	100	100	02	05	70	79
	ZVLIZZ	0-0	0-0	0-10	007	211	222	197	1/0	109	144	100	119	109	100	32	00	19	73
5	21/1/20	7.7	9-4	9-8	33/	296	203	211	189	109	103	139	12/	110	107	98	91	84	/8
	2VL120	1-1	9-11	10-3	300	312	2/0	248	199	1/9	161	140	133	122	112	103	95	88	82
(l=3)	2VL119	8-/	10-11	11-4	394	345	305	2/2	245	223	1/8	162	14/	135	124	114	105	9/	90
	2VL118	9-8	11-10	12-2	400	3//	335	300	212	247	221	209	168	155	143	132	122	114	108
40 PSF	2VL117	10-3	12-/	13-0	400	400	362	324	292	266	243	223	207	166	153	142	131	122	114
	2VL116	10'-11	13-2	13'-5	400	400	387	346	311	283	258	237	219	203	163	151	140	130	121
	2VL122	6'-4	8-6	8'-8	334	268	236	209	187	168	152	138	126	116	106	98	90	84	78
5.1/4"	2VLI21	7.0	9-2	9'+6	357	314	279	224	200	180	163	148	135	123	113	104	96	89	83
	2VLI20	7-6	9'-8	10'-0	377	331	293	263	211	190	171	155	142	130	119	110	101	94	87
(t=3 1/4")	2VLI19	8'-5	10'-9	11-1	400	366	324	289	260	210	189	172	156	143	131	121	1111	103	95
	2VLI18	9'-3	11.7	12'-0	400	400	355	319	288	263	241	195	179	164	151	140	130	121	113
42 PSF	2VLI17	10'-1	12'-4	12'-9	400	400	384	344	310	282	258	237	219	177	163	151	140	130	121
	2VI 16	10'-8	12.41	13'-3	400	400	400	367	330	300	274	252	232	215	173	160	148	138	128
	2VL122	6'-3	8'-5	8'-6	353	284	250	222	198	178	161	147	134	122	113	104	96	89	82
5 1/2"	2VLI21	6'-10	9'-0	9'-4	378	332	268	237	212	190	172	156	142	130	120	110	102	94	87
	2VL120	7-4	9'-6	9'-10	399	350	310	250	223	201	181	165	150	137	126	116	107	99	92
(t=3 1/2")	2VLI19	8'-3	10'-6	10'-11	400	387	342	306	275	222	200	182	165	151	139	128	118	109	101
	2VL 18	9'-1	11'-4	11'-9	400	400	376	337	305	278	254	206	189	174	160	148	138	128	119
44 PSF	2VLI17	9'-10	12'-1	12'-6	400	400	400	363	328	298	273	251	204	187	172	159	148	137	128
	2VL 16	10'-5	12'-8	13'-1	400	400	400	388	350	317	290	266	246	199	184	170	157	146	138
	2VL 22	5'-11	7'-10	8'-0	380	331	291	258	231	208	188	171	156	143	131	121	112	103	96
6 1/4"	2VLI21	6'-5	8'-7	8'-10	400	355	312	276	247	222	200	182	166	152	140	129	119	110	102
	2VL120	6'-11	9'-1	9'-4	400	400	329	292	260	234	211	192	175	160	147	135	125	115	107
(t=4 1/4")	2VLI19	7'-10	10'-0	10'-4	400	400	398	356	288	259	233	212	193	176	162	149	137	127	118
	2VL 18	8'-7	10'-10	11'-2	400	400	400	392	355	323	264	240	220	202	187	173	160	149	139
51 PSF	2VL 17	9'-3	11'-6	11-11	400	400	400	400	381	347	317	259	237	218	201	186	172	160	149
	2VL116	9'-10	12'-1	12'-6	400	400	400	400	400	369	337	310	253	232	214	198	183	170	158

COMPOSITE

Notes: 1. Minimum exterior bearing length required is 2.0 inches. Minimum interior bearing length required is 4.0 inches. If these minimum lengths are not provided, web crippling must be checked.
 Always contact Vulcraft when using loads in excess of 200 psf. Such loads often result from concentrated, dynamic, or long term load cases for which reductions due to bond breakage, concrete creep, etc. should be evaluated.
 All fire rated assemblies are subject to an upper live load limit of 250 psf.
 Inquire about material availability of 17, 19 & 21 gage.

47

Restrained Assembly	Type of	Concrete Thickness &	U.L. Design	Classified [Unrestrained Beam		
Rating	Protection	Type (1)	No. (2,3,4)	Fluted Deck	Cellular Deck (5)	Rating	
		2" NW&LW	859 *	2VLI,3VLI	2VLP, 3VLP	1,1.5,2,3 Hr.	
		2 1/2" NW&LW	822 *	2VLI,3VLI	2VLP, 3VLP	1 Hr.	
			825 *	1.5VLI,2VLI,3VLI	2VLP, 3VLP	1,1.5,2 Hr.	
			831 *	2VLI,3VLI	2VLP, 3VLP	1,1.5,2 Hr.	
			832 *	1.5VLI,2VLI,3VLI	1.5VLP, 2VLP, 3VLP	1,1.5,2,3 Hr.	
			833 *	1.5VLI,2VLI,3VLI	2VLP, 3VLP	1.5 Hr.	
	Sprayed Fiber		847 *	2VLI,3VLI	3VLP	1,1.5,3 Hr.	
			858 *	2VLI,3VLI	2VLP, 3VLP	1,1.5,2,4 Hr.	
			861 *	12VLI,3VLI		1,1.5 Hr.	
			870 *	1.5VLI,2VLI,3VLI	1.5VLP, 2VLP, 3VLP	1,2 Hr.	
			871 *	2VLI,3VLI	2VLP, 3VLP	1,1.5,2,3 Hr.	
		2 1/2" LW	862 *	2VLI,3VLI		1 Hr.	
		2 1/2" NW	864 *	3VLI	3VLP	1.5 Hr.	
2 Hr.		3 1/4" LW	860 *	2VLI.3VLI		1.1.5.2 Hr.	
(continued)		3 1/4" LW	733 #	1.5VL,1.5VLI,2VLI,3VLI	1.5VLP, 2VLP, 3VLP	1,1.5Hr.	
2 Hr. (continued)			826 #	1.5VL,1.5VLI,2VLI,3VLI	1.5VLP, 2VLP, 3VLP	1,1.5,2 Hr.	
			840 #	1.5VL,1.5VLI,2VLI,3VLI	1.5VLP, 2VLP, 3VLP	1,1.5 Hr.	
	Unprotected Deck		902 #	1.5VL,1.5VLI,2VLI,3VLI	1.5VLP, 2VLP, 3VLP	1,1.5 Hr.	
			907 #	1.5VL,1.5VLI,2VLI,3VLI	1.5VLP, 2VLP, 3VLP	1,2 Hr.	
			913 #	1.5VL 1.5VLI 2VLI 3VLI	1.5VLP.2VLP.3VLP	1 Hr	
			916 #	1.5VL,1.5VLI,2VLI,3VLI	1.5VLP, 2VLP, 3VLP	1,1.5,2,3 Hr.	
			918 #	1.5VL,1.5VLI,2VLI,3VLI	1.5VLP, 2VLP, 3VLP	1,1.5 Hr.	
			919 #	1.5VL,1.5VLI,2VLI,3VLI	1.5VLP, 2VLP, 3VLP	1,1.5 Hr.	
			920 #	2VLI.3VLI	2VLP_3VLP	1.5 Hr	
		4 ¹ /2" NW	902 #	1.5VL, 1.5VLI, 2VLI, 3VLI	1.5VLP, 2VLP, 3VLP	1,1.5 Hr.	
			916 #	1.5VL, 1.5VLI, 2VLI, 3VLI	1.5VLP, 2VLP, 3VLP	1,1.5,2,3 Hr.	
			918 #	1.5VL,1.5VLI,2VLI,3VLI	1.5VLP, 2VLP, 3VLP	1,1.5 Hr.	
			919 #	1.5VL,1.5VLI,2VLI,3VLI	1.5VLP, 2VLP, 3VLP	1,1.5 Hr.	

Appendix D: System 4, Girder-Slab System

D-Beam® Dimensions Table

	Web	Included	Depth	Web	Parent Beam			
Designation	Weight	Avg. Area	đ	Thickness t _w	Size	a	b	Top Bar wxt
	1b/ft	in ²	in	in		in	in	in x in
DB 8 x 35	34.7	10.2	8	.340	W10 x 49	4	3	3 x 1
DB 8 x 37	36.7	10.8	8	.345	W12 x 53	2	5	3 x 1
DB 8 x 40	39.8	11.7	8	.340	W10 x 49	3	3.5	3 x 1.5
DB 8 x 42	41.8	12.3	8	.345	W12 x 53	1	5.5	3 x 1.5
DB 9 x 41	40.7	11.9	9.645	.375	W14 x 61	3.375	5.25	3 x 1
DB 9 x 46	45.8	13.4	9.645	.375	W14 x 61	2.375	5.75	3 x 1.5

D-Beam® Reference Calculator is Available on Website. www.girder-slab.com

D-Beam® Properties Table

Designation	Steel Only / Web Ignored					Transformed Section / Web Ignored					
	Ix	C bot	C top	S bot	S top	Allowable Moment Fy=50 KSI f _p =0.6 Fy	Ix	C bot	C top	S bot	S top
	in ⁴	in	in	in ³	in ³	kft	in ⁴	in	in	in ³	in ³
DB 8 x 35	102	2.80	5.20	36.5	19.7	49	279	4.16	4.40	67.1	63.5
DB 8 x 37	103	2.76	5.24	37.3	19.7	49	282	4.16	4.42	67.7	63.8
DB 8 x 40	122	3.39	4.61	36.1	26.5	66	289	4.26	4.30	67.9	67.2
DB 8 x 42	123	3.35	4.65	36.9	26.5	66	291	4.26	4.32	68.4	67.5
DB 9 x 41	159	3.12	6.51	51.0	24.4	61	332	4.27	5.35	77.7	62.1
DB 9 x 46	195	3.84	5.79	50,8	33.7	84	356	4.43	5.20	80.6	68.6

